Abstract

In the setting of energy efficient building operation, an optimal boundary control problem governed by the heat equation with a convection term is considered together with bilateral control and state constraints. The aim is to keep the temperature in a prescribed range with the least possible heating cost. In order to gain regular Lagrange multipliers a Lavrentiev regularization for the state constraints is utilized. The regularized optimal control problem is solved by a primal-dual active set strategy (PDASS) which can be interpreted as a semismooth Newton method and, therefore, has a superlinear rate of convergence. To speed up the PDASS a reduced-order approach based on proper orthogonal decomposition (POD) is applied. An a-posteriori error analysis ensures that the computed (suboptimal) POD solutions are sufficiently accurate. Numerical test illustrates the efficiency of the proposed strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.