Abstract

The main contribution of this paper is to present simple and elegant podality-based algorithms for a variety of computational tasks motivated by, and finding applications to, pattern recognition, computer graphics, computational morphology, image processing, robotics, computer vision, and VLSI design. The problems that we address involve computing the convex hull, the diameter, the width, and the smallest area enclosing rectangle of a set of points in the plane, as well as the problems of finding the maximum Euclidian distance between two planar sets of points, and of constructing the Minkowski sum of two convex polygons. Specifically, we show that once we fix a positive constant /spl epsiv/, all instances of size m, (n/sup 1/2 +/spl epsiv///spl les/m/spl les/n) of the problems above, stored in the first [m//spl radic/n] columns of a mesh with multiple broadcasting of size /spl radic/n/spl times//spl radic/n can be solved time-optimally in /spl Theta/(m//spl radic/n) time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.