Abstract

In this study, numerical simulation of a thermo-acoustic heat engine is performed and a reduced order model of the system based on the Proper Orthogonal Decomposition method is obtained. The governing equations are solved with a finite volume-based solver. The reduced order model is constructed using the snapshots when the system reaches the limit cycle. A quadratic polynomial type ODE system with 11-modes is constructed from the Galerkin projection for the high fidelity CFD computations of the coupled thermo-acoustic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.