Abstract
In this work linear-quadratic optimal control problems for parabolic equations with mixed control-state constraints are considered. These problems arise when a Lavrentiev regularization is utilized for state constrained linear-quadratic optimal control problems. For the numerical solution a Galerkin discretization is applied utilizing proper orthogonal decomposition (POD). Based on a perturbation method it is determined how far the suboptimal control, computed on the basis of the POD method, is from the (unknown) exact one. Numerical examples illustrate the theoretical results. In particular, the POD Galerkin scheme is applied to a problem with state constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.