Abstract

Selective hydrogenation of unsaturated aldehydes to unsaturated alcohols is a valuable but challenging task for synthesizing fine chemicals. We report that single Rh atoms anchored to the edges of 2D MoS2 sheets can efficiently convert crotonaldehyde to crotyl alcohol with 100% selectivity via a steric confinement effect of pocketlike active sites. Characterization results suggest that the synthesized Rh1/MoS2 single-atom catalysts (SACs) possess a unique geometric and electronic configuration, which confines the adsorption mode of the reactant molecule by a steric effect. The DFT calculations suggest that the MoS2 sheets terminate with oxidized Mo edges and the Rh1 stably anchors at the Mo cation vacancy site, which can facilely dissociate H2 to H atoms. The dissociated H atoms spill over to react with the edge O atoms to form OH species and create an HO-Mo-Rh1-Mo-OH configuration, resembling a pocketlike active site, which confines the adsorption mode of the crotonaldehyde due to steric effects. Such specific adsorption configuration yields 100% selectivity. The strategy of constructing pocketlike active centers with single metal atoms and 2D nanosheets opens new approaches to designing highly selective SACs for specific classes of catalytic transformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.