Abstract
In recent years, two competitive time series classification models, namely, ROCKET and MINIROCKET, have garnered considerable attention due to their low training cost and high accuracy. However, they rely on a large number of random 1-D convolutional kernels to comprehensively capture features, which is incompatible with resource-constrained devices. Despite the development of heuristic algorithms designed to recognize and prune redundant kernels, the inherent time-consuming nature of evolutionary algorithms hinders efficient evaluation. To efficiently prune models, this paper eliminates feature groups contributing minimally to the classifier, thereby discarding the associated random kernels without direct evaluation. To this end, we incorporate both group-level (l2,1-norm) and element-level (l2-norm) regularizations to the classifier, formulating the pruning challenge as a group elastic net classification problem. An ADMM-based algorithm is initially introduced to solve the problem, but it is computationally intensive. Building on the ADMM-based algorithm, we then propose our core algorithm, POCKET, which significantly speeds up the process by dividing the task into two sequential stages. In Stage 1, POCKET utilizes dynamically varying penalties to efficiently achieve group sparsity within the classifier, removing features associated with zero weights and their corresponding kernels. In Stage 2, the remaining kernels and features are used to refit a l2-regularized classifier for enhanced performance. Experimental results on diverse time series datasets show that POCKET prunes up to 60% of kernels without a significant reduction in accuracy and performs 11× faster than its counterparts. Our code is publicly available at https://github.com/ShaowuChen/POCKET.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.