Abstract

IntroductionWhile cyclin-dependent kinases (CDKs) have a key role in promoting/controlling transition between the different phases of the cell cycle, transcriptional kinases, like CDK12, are mainly involved in gene transcription. CDK12 has been shown to regulate the expression of genes involved in DNA damage and to maintain genomic stability. Impairment of CDK12 activity is synergic with PARP inhibitor and cisplatin treatments in different cellular systems. We here aimed to generate ovarian cancer cell lines knocked out (KO) for CDK12 to understand its role in ovarian cancer and in response to chemotherapy.Material and methodsA2780 and SKOV3 CDK12 KO clones were generated with CRISPR/Cas9 technology. Cell cycle analysis was evaluated by standard flow cytometric methods and DNA repair genes levels by Real Time PCR. Caspase 3 activity was measured to detect apoptosis with a luminescence-based assay. Cytotoxicity experiments were performed treating cells with different drug concentrations and evaluating cell survival after 72 hours by MTS assay. For in vivo studies 7.5 millions of cells were transplanted subcutaneously in nude mice and animals were monitored for tumour appearance and growth.Results and discussionsWe obtained 2 CDK12 KO ovarian cancer clones, A2780 KO and SKOV3 KO, out of more than 300 clones screened. The cell growth of both A2780 KO and SKOV3 KO cells is slower than the wild type (WT) cells, they have a less clonogenic ability and a tetraploid DNA content. Both CDK12 KO clones have a higher basal caspase activity than the WT cell lines, indicative of higher basal induction of apoptosis, while no increase in autophagy or senescence is observed. Both CDK12 KO clones show a decreased expression in BRCA1 and FANCD2 DNA repair genes than the WT cells. Cytotoxic experiments with anticancer agents with different mechanism of action show that both KO clones are less sensitive to ATM, CHK1 and WEE1 inhibitors treatment as compared to WT cells, while platinum and PARP inhibitors show similar cytotoxic activity in KO and WT cells. Interestingly enough, when KO clones were transplanted in nude mice, no tumour take was observed.ConclusionWe were able to obtain CDK12 KO cells. We think that these models could help in disclosing new roles of CDK12 in ovarian carcinoma and may represent a useful tool to study new combination therapies for tumours with CDK12 mutations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call