Abstract

IntroductionHuman African trypanosomiasis (HAT) is caused by Trypanosoma brucei gambiense and rhodesiense and is transmitted to humans by tsetse flies in sub-Saharan Africa. To detect cure or treatment failure, patients are followed up after treatment integrating the use of biomarkers in blood or cerebrospinal fluid (CSF).MethodsA systematic review of the literature according to the PRISMA Statement for Reporting Systematic Reviews was done, focusing on biological markers for HAT post-treatment follow-up. Articles were retrieved from PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) by using keywords: Human African Trypanosomiasis, Biomarkers, Follow up, Post treatment.ResultsA panel of biomarkers is used to detect relapses or to confirm recovery. For post-treatment follow-up, an examination of the CSF is performed. White blood cell counts in CSF with a defined cut-off value have been proven to be the most accurate to assess the treatment outcome. The intrathecal immunoglobulin M synthesis is a specific and sensitive parameter for the detection of CNS involvement in cases of HAT caused by T. brucei gambiense. The decrease of trypanosome-specific antibodies concentrations in CSF could be a good parameter for definite cure. High CSF IL-10 levels during treatment follow-up indicate recurring CNS inflammation and treatment failure. An increase of Neopterin in CSF and the presence of trypanosome spliced leader RNA in the blood have a high potential as predictors for treatment failure but need further validation.ConclusionNew biomarkers for post-treatment follow-up in HAT should 1) have high diagnostic specificity and sensitivity; 2) be applicable in field conditions; 3) preferentially be performed on blood and thus avoid the painful lumbar puncture during post-treatment control visits; and 4) shorten the follow-up period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call