Abstract

Reducing adverse neurodevelopmental outcomes associated with preterm birth is a major challenge facing neonatal medicine, as abnormalities engendered during the perinatal period have lifelong implications. The pathological mechanisms leading to abnormal neurodevelopment in preterm infants involve several pathways. Many direct and indirect effects of preterm birth on neural development occur at the micro structural or neurochemical level, meaning that current methods for assessing neurological injury in preterm infants provide only limited mechanistic and prognostic information. A promising alternative approach is the use of resting state functional MRI (rs-fMRI) to infer integration of neural activity across brain regions (functional connectivity (FC)). Adults who were born preterm show persistent differences in FC, and early detection of such changes offers potential insights into the pathophysiology of preterm brain injury. These functional changes may be influenced by both neonatal course and underlying susceptibilities to abnormal development, including genetic factors. We utilised rapid multiband sequence rs-fMRI acquisition at 3 Tesla, to characterise functional brain connectivity in 30 infants born at

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.