Abstract

Dipole moments and static dipole polarizabilities are calculated for neon and the molecules HF, H2O, NH3, CH4 and CO from SCF and correlated wavefunctions. The construction of appropriate gaussian-type basis sets is discussed and the convergence of the correlation contributions to the polarizability is analysed. The effect of vibrational averaging is also investigated. The polarizabilities as obtained from the coupled electron pair approximation (CEPA) with the most extended basis sets differ from experimental values by less than 1·5 per cent in all cases. The calculated polarizability anisotropies appear to be correct to about 5–15 per cent. The correlation contributions to the polarizabilities are found to vary from 3 to 12 per cent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.