Abstract
For vitrification of high-level wastes (HLW) at the Hanford Site, a Joule-heated overflow type melter with bottom draining capability and capable of operating at temperatures up to 1500{degrees}C is being developed. The original proposed Hanford Waste Vitrification Plant (HWVP) melter used a 1150{degrees}C processing temperature and was tested using glasses with up to 28 wt% waste oxide loading for NCAW (Neutralized Current Acid Waste). The goal of the high-temperature melter (HTM) is the volume reduction of the final product and increase of the waste processing rate by processing high-waste loaded glasses at higher temperatures. This would dramatically decrease waste disposal and processing costs. The aim of glass development for the HTM is to determine compositions and melting temperatures for processible and acceptable glasses with a high waste loading. Glass property/composition models for viscosity and liquidus temperature developed in the Glass Envelope Definition (GED) study were used. The results of glass formulation and experimental testing are presented for NCAW and DST/SST (Double-Shell Tank/Single-Shell Tank) Blend waste. Although the purpose of this report was to summarize the glass development study with Blend waste only, the results with NCAW were needed because glass development with Blend waste was based on the results from the glass development study with NCAW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.