Abstract

In this article, we have analyzed the nature and characteristics of PSe noncovalent interactions by studying the effect of substitution on XH2PSeH2, H3PSeHX and XH2PSeHX (X= -H, -F, -CH3, -CF3, -Cl, -OH, -OCH3, -NH2, -NHCH3, and -CN) as our systems of interest at MP2/aug-cc-pVDZ level of theory. Binding energy calculations depict that binding energy increases in the order XH2PSeH2 < H3PSeHX < XH2PSeHX with the nature of the substituent having a direct effect on the strength of the interactions. PSe contacts as short as 2.52 Å were observed and analyzed in our study. The energy values for PSe contacts were found to exist in the range of -1.20 kcal mol(-1) to -7.89 kcal mol(-1). The topological analysis confirms the presence of PSe contacts in all the complexes with characteristics similar to hydrogen bonds. NBO analysis helped in categorizing these interactions into pnicogen and chalcogen bonds, depending on the strength of P(lp) to σ*(Se-X) orbitals or Se(lp) to σ*(P-X) orbitals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.