Abstract

Pneumococcal DnaJ was recently shown to be a potential protein vaccine antigen that induces strong Th1 and Th17 immune response against streptococcus pneumoniae infection in mice. However, how DnaJ mediates T cell immune response against S. pneumoniae infection has not been addressed. Here, we investigate whether DnaJ contributes to the development of T cell immunity through the activation of bone marrow-derived dendritic cells (BMDCs). We found that endotoxin-free recombinant DnaJ (rDnaJ) induced activation and maturation of BMDCs via recognition of Toll-like receptor 4 (TLR4) and activation of MAPKs, NF-κB and PI3K-Akt pathways. rDnaJ-treated BMDCs effectively stimulated naïve CD4+ T cells to secrete IFN-γ and IL-17A. Splenocytes from mice that were adoptively transferred with rDnaJ-pulsed BMDCs secreted higher levels of IFN-γ and IL-17A compared with those that received PBS-activated BMDCs. Splenocytes from TLR4−/− mice immunized with rDnaJ produced lower levels of IFN-γ and IL-17A compared with those from wild type mice. Our findings indicate that DnaJ can induce Th1 and Th17 immune responses against S. pneumoniae through activation of BMDCs in a TLR4-dependent manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.