Abstract

BackgroundAlthough minimally invasive surgery (MIS) affords several advantages compared to conventional open surgery, robotic MIS systems still have many limitations. One of the limitations is the non-uniform gripping force due to mechanical strings of the existing systems. To overcome this limitation, a surgical instrument with a pneumatic gripping system consisting of a compressor, catheter balloon, micro motor, and other parts is developed.MethodThis study aims to implement a surgical instrument with a pneumatic gripping system and pitching/yawing joints using micro motors and without mechanical strings based on the surgical-operation-by-wire (SOBW) concept. A 6-axis external arm for increasing degrees of freedom (DOFs) is integrated with the surgical instrument using LabVIEW® for laparoscopic procedures. The gripping force is measured over a wide range of pressures and compared with the simulated ideal step function. Furthermore, a kinematic analysis is conducted. To validate and evaluate the system’s clinical applicability, a simple peg task experiment and workspace identification experiment are performed with five novice volunteers using the fundamentals of laparoscopic surgery (FLS) board kit. The master interface of the proposed system employs the hands-on-throttle-and-stick (HOTAS) controller used in aerospace engineering. To develop an improved HOTAS (iHOTAS) controller, 6-axis force/torque sensor was integrated in the special housing.ResultsThe mean gripping force (after 1,000 repetitions) at a pressure of 0.3 MPa was measured to be 5.8 N. The reaction time was found to be 0.4 s, which is almost real-time. All novice volunteers could complete the simple peg task within a mean time of 176 s, and none of them exceeded the 300 s cut-off time. The system’s workspace was calculated to be 11,157.0 cm3.ConclusionsThe proposed pneumatic gripping system provides a force consistent with that of other robotic MIS systems. It provides near real-time control. It is more durable than the existing other surgical robot systems. Its workspace is sufficient for clinical surgery. Therefore, the proposed system is expected to be widely used for laparoscopic robotic surgery. This research using iHOTAS will be applied to the tactile force feedback system for surgeon’s safe operation.

Highlights

  • Invasive surgery (MIS) using conventional laparoscopic tools has emerged as a new paradigm for surgical operation because it offers many advantages such as smaller incision, reduced hemorrhaging, less pain, reduced exposure of internal organs to possible external contaminants, faster recovery, and short-term hospitalization period compared to conventional open surgery

  • The proposed system is expected to be widely used for laparoscopic robotic surgery

  • Minimally invasive surgery (MIS) is greatly beneficial to patients. It suffers from some disadvantages: only skilled surgeons can perform non-robotic surgery, surgeons are not provided with haptic feedback, surgeries take longer compared with open surgery, suturing is difficult, and the degree of freedom (DOF) of the end-effector is less sufficient to perform surgery [1,2,3]

Read more

Summary

Introduction

Invasive surgery (MIS) using conventional laparoscopic tools has emerged as a new paradigm for surgical operation because it offers many advantages such as smaller incision, reduced hemorrhaging, less pain, reduced exposure of internal organs to possible external contaminants, faster recovery, and short-term hospitalization period compared to conventional open surgery. These research groups have aimed to imitate users’ wrist motions, such as pitching, yawing, rolling, and gripping motions, within an approximately 8-mm diameter as same diameter of da Vinci’s EndoWrist Their proposed devices suffer from several drawbacks, including long peg task time, coupling with several moving joints, and bulky size [5,8,9,10]. The da Vinci surgical robot system’s EndoWrist is reported to have different gripping forces for different wrist postures [11] These limitations are considered to arise from the joints of the gripping motion, which is used for generating driving force, being coupled with other joints through mechanical strings. A surgical instrument with a pneumatic gripping system consisting of a compressor, catheter balloon, micro motor, and other parts is developed

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call