Abstract

The use of pneumatics has led to the development of a linear actuator that incorporates pressure-resistant metal bellows. This pressure-resistant bellows device is airtight and capable of considerable expansion. Conventional bellows devices are susceptible to bending stresses at the folds because high air pressure tends to crush the curvature of the bellows there. Therefore, their application only uses a 0.1 MPa difference in inner/outer pressure. The pressure-resistance of the bellows device is improved by the installation of viscoelastic rings in its folds, rings which reduce the bending stress caused by the high air pressure at the thin-walled inner folds. As a result, the pressure resistance is increased by 0.7 MPa. This paper uses a theoretical formulation and a finite element analysis approach in reporting the improvement in pressure resistance made by the installation of the viscoelastic rings. Furthermore, the actuator with pressure-resistant, thin-walled metal bellows is used to control the posture and damping force of a vehicle’s active suspension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.