Abstract

This study considers the practical issue of severe noise observed in a multi-stage sleeve control valve within an engineering project. Employing computational fluid dynamics (CFD) methodology, we initially performed numerical simulations to analyze the steady-state flow field within the control valve. Subsequently, we identified the underlying factors contributing to the noise issue within the valve. To assess the aerodynamic noise of the control valve, we applied the FW-H acoustic analogy theory and determined the intensity and distribution characteristics of the aerodynamic noise. Finally, we validated the numerical simulation results of the aerodynamic noise against theoretical calculations. Our findings indicate that the steam medium experiences high-speed flow due to disturbances caused by various components within the valve, resulting in significant turbulence intensity. This intense turbulence leads to pressure fluctuations in the steam, serving as the main catalyst for noise generation. The aerodynamic noise of the control valve exhibits a roughly symmetrical distribution along the pipe–valve system, with noticeable increases in noise levels upstream and downstream of the valve compared to other regions. The distribution cloud map obtained from the numerical simulations serves as a valuable reference for analyzing the locations where aerodynamic noise is generated. Comparing the numerical simulation results with the theoretical calculations at the noise monitoring points, we found that the noise error of the monitoring points was less than 5%, which proves the effectiveness of the numerical simulation method. These results provide essential data support for the acoustic detection of aerodynamic noise in control valves, carrying significant practical implications for engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call