Abstract

The problem of imbalance detection in a three-phase power system using a phasor measurement unit (PMU) is considered. A general model for the zero, positive, and negative sequences from a PMU measurement at off-nominal frequencies is presented and a hypothesis testing framework is formulated. The new formulation takes into account the fact that minor degree of imbalance in the system is acceptable and does not indicate subsequent interruptions, failures, or degradation of physical components. A generalized likelihood ratio test (GLRT) is developed and shown to be a function of the negative-sequence phasor estimator and the acceptable level of imbalances for nominal system operations. As a by-product to the proposed detection method, a constrained estimation of the positive and negative phasors and the frequency deviation is obtained for both balanced and unbalanced situations. The theoretical and numerical performance analyses show improved performance over benchmark techniques and robustness to the presence of additional harmonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.