Abstract

Poly(1-methyl-6-thioinosinic acid), or PMTI, is a single-stranded polyribonucleotide and is the first homopolyribonucleotide devoid of Watson-Crick hydrogen bonding sites to show potent human immunodeficiency virus (HIV) inhibition. PMTI was found to be active when evaluated against a variety of low passage clinical HIV isolates in fresh human peripheral blood cells, including T cell-tropic and monocyte-macrophage-tropic viruses, syncytium-inducing and non-syncytium-inducing viruses and viruses representative of the various HIV-1 clades (A through F). The compound was active against HIV-2, all nucleoside and non-nucleoside reverse transcriptase (RT) inhibitor drug-resistant virus isolates tested and interacted with AZT or ddl to synergistically inhibit HIV infection. In biochemical inhibition assays, PMTI was determined to be a potent inhibitor of HIV-1 and HIV-2 RT, including RTs with mutations that engender resistance to nucleoside and non-nucleoside RT inhibitors. PMTI inhibited both the polymerase and RNase H activities of HIV RT. PMTI did not inhibit HIV-1 protease or integrase. Cell-based mechanism of action assays indicated that PMTI also interfered with early events in the entry of HIV into target cells. Furthermore, PMTI inhibited the fusion of gp120-expressing and CD4-expressing cells, but at concentrations approximately 1 log10 greater than those that inhibited virus entry. These results suggest that the homopolyribonucleotide PMTI blocks HIV replication in human cells at its earliest stages by multiple mechanisms, inhibition of virus entry and inhibition of RT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.