Abstract

The excellent biocompatibility drug delivery system for effective treatment of glioma is still greatly challenged by the existence of blood-brain barrier, blood-brain tumor barrier, and the tissue toxicity caused by chemotherapy drugs. In this study, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) is used for the first time for modifying third-generation poly(amidoamine) (PAMAM) to enhance their brain tumor-targeted drug delivery ability as well as simultaneously reducing the toxicity of PAMAM dendrimers and the tissue toxicity of the loaded doxorubicin (DOX). The cytotoxicity, the therapeutic ability in vitro, and the brain tumor-targeted ability of the PMPC modified PAMAM nanoparticles are further studied. Results indicate that PMPC, as a dual-functional modifier, can significantly reduce the cytotoxicity of PAMAM dendrimers, while efficiently target the brain tumor. In addition, the therapeutic effect of DOX-loaded PAMAM-PMPC in mice inoculated with U-87 is also studied in vivo. In comparison with DOX solution, DOX-loaded PAMAM-PMPC alleviates weight loss of tumor-inoculated mice and reduces the cardiotoxicity of DOX. The tumor growth inhibition, in vivo, is significantly increased up to (80.76±1.66)%. In conclusion, this strategy of PMPC dual-functional targeted nanocarrier provides a new method for the delivery of chemotherapeutic drugs to treat glioma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call