Abstract

Inflammatory factors and type I interferons (IFNs) are key components of host antiviral innate immune responses, which can be released from the pathogen-infected macrophages. African swine fever virus (ASFV) has developed various strategies to evade host antiviral innate immune responses, including alteration of inflammatory responses and IFNs production. However, the molecular mechanism underlying inhibition of inflammatory responses and IFNs production by ASFV-encoded proteins has not been fully understood. Here we report that ASFV infection only induced low levels of IL-1β and type I IFNs in porcine alveolar macrophages (PAMs), even in the presence of strong inducers such as LPS and poly(dA:dT). Through further exploration, we found that several members of the multigene family 360 (MGF360) and MGF505 strongly inhibited IL-1β maturation and IFN-β promoter activation. Among them, pMGF505-7R had the strongest inhibitory effect. To verify the function of pMGF505-7R in vivo, a recombinant ASFV with deletion of the MGF505-7R gene (ASFV-Δ7R) was constructed and assessed. As we expected, ASFV-Δ7R infection induced higher levels of IL-1β and IFN-β compared with its parental ASFV HLJ/18 strain. ASFV infection-induced IL-1β production was then found to be dependent on TLRs/NF-κB signaling pathway and NLRP3 inflammasome. Furthermore, we demonstrated that pMGF505-7R interacted with IKKα in the IKK complex to inhibit NF-κB activation and bound to NLRP3 to inhibit inflammasome formation, leading to decreased IL-1β production. Moreover, we found that pMGF505-7R interacted with and inhibited the nuclear translocation of IRF3 to block type I IFN production. Importantly, the virulence of ASFV-Δ7R is reduced in piglets compared with its parental ASFV HLJ/18 strain, which may due to induction of higher IL-1β and type I IFN production in vivo. Our findings provide a new clue to understand the functions of ASFV-encoded pMGF505-7R and its role in viral infection-induced pathogenesis, which might help design antiviral agents or live attenuated vaccines to control ASF.

Highlights

  • African swine fever (ASF) is one of the most lethal viral diseases affecting both domestic and wild swine

  • African swine fever virus (ASFV) causes a highly lethal swine disease that is currently present in many countries, severely affecting the pig industry

  • We found that ASF virus (ASFV) infection only induced low levels of IL-1β and type I IFNs in porcine alveolar macrophages (PAMs) and identified that pMGF505-7R, a member of the multigene family 505 (MGF505), strongly inhibited IL-1β and IFN-β production

Read more

Summary

Introduction

African swine fever (ASF) is one of the most lethal viral diseases affecting both domestic and wild swine. The acute infection of the ASF disease in domestic pigs leads to a 100% mortality rate with symptoms including high fever, vascular changes, cyanosis of the skin, abdominal pain, and diarrhoea [1]. The spread of ASF poses great economic losses to the pig industry and the ecosystems in the affected countries [2]. ASF virus (ASFV) is the etiological agent of the disease, and it is an enveloped, icosahedral, double-stranded DNA virus with a genome length ranging from 170 to 193 kb. It has been reported that more than 150 viral proteins are expressed in ASFV-infected macrophages, including proteins involved in the viral replication, virus-host interactions and modulation of host innate immune response [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call