Abstract
Automated skin disease classification is crucial for the timely diagnosis of skin lesions. However, accurate skin disease classification presents a challenge, given the significant intra-class variation and inter-class similarity among different kinds of skin diseases. Previous studies have attempted to address this issue by identifying the most discriminative part of a lesion, but they tend to overlook the interactions between multi-scale features. In this paper, we propose a Progressive Multi-stage Attention Network (PMANet) to enhance the learning of multi-scale discriminative features, so that the model can gradually localize from stable fine-grained to coarse-grained regions in order to improve the accuracy of disease classification. Specifically, we utilize a progressive multi-stage network to supervise feature and classification, thereby fostering multi-scale information and improving the model's ability to learn intra-class consistent information. Additionally, we propose an enhanced region proposal block that highlights key discriminative features and suppresses background noise of lesions, reinforcing the learning of inter-class discriminative features. Furthermore, we propose a multi-branch feature fusion block that effectively fuses multi-scale lesion features from different stages. Comprehensive experiments conducted on two datasets substantiate the effectiveness and superiority of the proposed method in accurately classifying skin disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.