Abstract

<p>Whether the urban heat island (UHI) is affected by air pollution in urban areas has attracted much attention. By analyzing the observation data of automatic weather stations and environmental monitoring stations in Beijing from 2016 to 2018, we found a seasonally dependent interlink of the UHI intensity (UHII) and PM<sub>2.5</sub> concentration in urban areas. PM<sub>2.5</sub> pollution weakens the UHII in summer and winter night, but strengthens it during winter daytime. The correlation between the UHI and PM<sub>2.5</sub> concentration has been regulated by the interaction of aerosol with radiation, evaporation and planetary boundary layer (PBL) height. The former two change the surface energy balance via sensible and latent heat fluxes, while the latter affects atmospheric stability and energy exchange. In summer daytime, aerosol-radiation interaction plays an important role, and the energy balance in urban areas is more sensitive to PM<sub>2.5</sub> concentration than in rural areas, thereby weakening UHII. In winter daytime, aerosol-PBL interaction is dominant, because aerosols lower the PBL height and stabilize atmosphere, weaken the heat exchange with the surrounding, with more heat accumulated in the urban areas and the increased UHII. Changes in evaporation and radiation strengthen the relationship. At night, the change of UHII more depends on the energy stored in the urban canopy. Aerosols effectively reduce the incident energy during daytime, and the long-wave radiation from the buildings of urban canopy at night becomes less, leading to a weakened UHII. Our analysis results can improve the understanding of climate-aerosols interaction in megacities like Beijing.</p><p>How to cite. Yang, G., Ren, G., Zhang, P., Xue, X., Tysa, S. K., Jia, W., Qin, Y., Zheng, X., and Zhang, S.: PM<sub>2.5</sub> Influence on Urban Heat Island (UHI) Effect in Beijing and the Possible Mechanisms, Geophys Res Atmos, 126, https://doi.org/10.1029/2021JD035227, 2021.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call