Abstract

Air pollution is highly associated with respiratory diseases. However, the influence and mechanism of particulate matter with aerodynamic equal to or less than 2.5 μm (PM2.5) in lung homeostasis remain unclear. Herein, we demonstrated the induction of pulmonary fibrosis (PF) by PM2.5 exposure. The animal model showed that PM2.5 exposure could activate the oxidative stress and inflammation response, promoting epithelial-mesenchymal transition and accumulation of collagen, high expression of pro-fibrotic factors, and pathological characteristics of fibrosis. The proteomic analysis indicated that PM2.5 exposure decreased the expression of caveolin-1 (Cav-1), and many differential proteins were enriched in the TGF-β1/Smad, endoplasmic reticulum stress (ERS) and autophagy pathways. Combining in vivo and in vitro experiments, it was found that PM2.5 exposure could reduce Cav-1 protein levels and activate TGF-β1/Smad3 signaling pathways through ERS and autophagy pathways, thereby inducing cell apoptosis and promoting pulmonary fibrosis. However, inhibiting ERS could alleviate the occurrence of autophagy, and blocking the autophagy system could increase the level of Cav-1 protein and inhibit TGF- β 1/Smad3 signaling pathway to improve pulmonary fibrosis. Therefore, we demonstrated that the exposure of PM2.5 could enhance the ERS induced-autophagy-mediated Cav-1 degradation, thus activating the TGF-β1/Smad3 axis to promote pneumonocytes apoptosis and overproduction of extracellular matrix (ECM), finally aggravating PF. Moreover, our findings revealed that intermittent exposure to high doses of PM2.5 was more toxic than continuous exposure to low dose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.