Abstract
Air pollution may be related to adverse birth outcomes. Exposure information from land-based monitoring stations often suffers from limited spatial coverage. Satellite data offer an alternative data source for exposure assessment. We used birth certificate data for births in Connecticut and Massachusetts, United States (2000-2006). Gestational exposure to PM2.5 was estimated from US Environmental Protection Agency monitoring data and from satellite data. Satellite data were processed and modeled by using two methods-denoted satellite (1) and satellite (2)-before exposure assessment. Regression models related PM2.5 exposure to birth outcomes while controlling for several confounders. Birth outcomes were mean birth weight at term birth, low birth weight at term (<2500 g), small for gestational age (SGA, <10th percentile for gestational age and sex), and preterm birth (<37 weeks). Overall, the exposure assessment method modified the magnitude of the effect estimates of PM2.5 on birth outcomes. Change in birth weight per interquartile range (2.41 μg/m) increase in PM2.5 was -6 g (95% confidence interval = -8 to -5), -16 g (-21 to -11), and -19 g (-23 to -15), using the monitor, satellite (1), and satellite (2) methods, respectively. Adjusted odds ratios, based on the same three exposure methods, for term low birth weight were 1.01 (0.98-1.04), 1.06 (0.97-1.16), and 1.08 (1.01-1.16); for SGA, 1.03 (1.01-1.04), 1.06 (1.03-1.10), and 1.08 (1.04-1.11); and for preterm birth, 1.00 (0.99-1.02), 0.98 (0.94-1.03), and 0.99 (0.95-1.03). Under exposure assessment methods, we found associations between PM2.5 exposure and adverse birth outcomes particularly for birth weight among term births and for SGA. These results add to the growing concerns that air pollution adversely affects infant health and suggest that analysis of health consequences based on satellite-based exposure assessment can provide additional useful information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.