Abstract
Airports are identified hotspots for air pollution, notably for fine particles (PM2.5) that are pivotal in aerosol-cloud interaction processes of climate change and human health. We herein studied the field observation and statistical analysis of 10-year data of PM2.5 and selected emitted co-pollutants (CO, NOx, and O3), in the vicinity of three major Canadian airports, with moderate to cold climates. The decadal data analysis indicated that in colder climate airports, pollutants like PM2.5 and CO accumulate disproportionally to their emissions in fall and winter, in comparison to airports in milder climates. Decadal daily averages and standard errors of PM2.5 concentrations were as follows: Vancouver, 5.31 ± 0.017; Toronto, 6.71 ± 0.199; and Montreal, 7.52 ± 0.023 μg/m3. The smallest and the coldest airport with the least flights/passengers had the highest PM2.5 concentration. QQQ-ICP-MS/MS and HR-S/TEM analysis of aerosols near Montreal Airport indicated a wide range of emerging contaminants (Cd, Mo, Co, As, Ni, Cr, and Pb) ranging from 0.90 to 622 μg/L, which were also observed in the atmosphere. During the lockdown, a pronounced decrease in the concentrations of PM2.5 and submicron particles, including nanoparticles, in residential areas close to airports was observed, conforming with the recommended workplace health thresholds (~ 2 × 104 cm−3), while before the lockdown, condensable particles were up to ~ 1 × 105 cm−3. Targeted reduction of PM2.5 emission is recommended for cold climate regions.Graphical abstract Supplementary InformationThe online version contains supplementary material available at 10.1007/s11356-022-19708-8.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.