Abstract
The main component of haze is the particulate matter (PM) 2.5. How to explore the laws of PM2.5 concentration changes is the main content of air quality prediction. Combining the characteristics of temporality and non-linearity in PM2.5 concentration series, more and more deep learning methods are currently applied to PM2.5 predictions, but most of them ignore the non-stationarity of time series, which leads to a lower accuracy of model prediction. To address this issue, an integration method of gated recurrent unit neural network based on empirical mode decomposition (EMD-GRU) for predicting PM2.5 concentration was proposed in this paper. This method uses empirical mode decomposition (EMD) to decompose the PM2.5 concentration sequence first and then fed the multiple stationary sub-sequences obtained after the decomposition and the meteorological features into the constructed GRU neural network successively for training and predicting. Finally, the sub-sequences of the prediction output are added to obtain the prediction results of PM2.5 concentration. The forecast result of the case in this paper show that the EMD-GRU model reduces the RMSE by 44%, MAE by 40.82%, and SMAPE by 11.63% compared to the single GRU model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.