Abstract
Surface monitoring, vertical atmospheric column observation, and simulation using chemical transportation models are three dominant approaches for perception of fine particles with diameters less than 2.5 micrometers (PM2.5) concentration. Here we explored an image-based methodology with a deep learning approach and machine learning approach to extend the ability on PM2.5 perception. Using 6976 images combined with daily weather conditions and hourly time data in Shanghai (2016), trained by hourly surface monitoring concentrations, an end-to-end model consisting of convolutional neural network and gradient boosting machine (GBM) was constructed. The mean absolute error, the root-mean-square error and the R-squared for PM2.5 concentration estimation using our proposed method is 3.56, 10.02, and 0.85 respectively. The transferability analysis showed that networks trained in Shanghai, fine-tuned with only 10% of images in other locations, achieved performances similar to ones from trained on data from target locations themselves. The sensitivity of different regions in the image to PM2.5 concentration was also quantified through the analysis of feature importance in GBM. All the required inputs in this study are commonly available, which greatly improved the accessibility of PM2.5 concentration for placed and period with no surface observation. And this study makes an exploratory attempt on pollution monitoring using graph theory and deep learning approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.