Abstract

Volatile methyl siloxanes (VMS) have been widely used in personal care products and industrial applications, and are an important component of VOCs (volatile organic compounds) indoors. They have sufficiently long lifetimes to undergo long-range transport and to form secondary aerosols through atmospheric oxidation. To investigate these silicon-containing secondary organic aerosols (Si-SOA), we collected PM2.5 samples during 8th-21st August 2018 (summer) and 3rd-23rd January 2019 (winter) at an urban site of Beijing. As the oxidation of VMS mainly results in hydrophilic polar semi-volatile and non-volatile oxidation products, the differences between total water-soluble Si and total water-soluble inorganic Si were used to estimate water-soluble organic Si, considered to be secondary organic Si (SO–Si). The average concentrations of SO–Si during the summer and winter campaigns were 4.6 ± 3.7 and 13.2 ± 8.6 ng m−3, accounting for approximately 80.1 ± 10.1% and 80.2 ± 8.7% of the total water-soluble Si, and 1.2 ± 1.2% and 5.0 ± 6.9% of total Si in PM2.5, respectively. The estimated Si-SOA concentrations were 12.7 ± 10.2 ng m−3 and 36.6 ± 23.9 ng m−3 on average in summer and winter, which accounted for 0.06 ± 0.07% and 0.16 ± 0.22% of PM2.5 mass, but increased to 0.26% and 0.92% on certain days. We found that net solar radiation is positively correlated with SO–Si levels in the summer but not in winter, suggesting seasonally different formation mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.