Abstract

A nanostructured spinel-type oxide catalyst (CoCr2O4) prepared by solution combustion synthesis was developed and deposited over a SiC wall-flow trap for diesel particulate removal. Bench tests proved that, after soot loading, the developed trap enables a faster and more complete regeneration at 550 degrees C than a commercial Pt-catalyst based trap or a noncatalyzed trap. On the other hand, secondary nanoparticle emission occurs during the fast regeneration promoted by the CoCr2O4-catalyzed trap. This is a likely consequence of oxidative fragmentation of the trapped soot agglomerates. This problem can be resolved by performing a "mild" regeneration at lower temperatures (e.g., 450 degrees C).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call