Abstract

Abstract The powder metallurgy (P/M) process has been used primarily for the production of advanced high-speed tool steels. However, the P/M process is also being applied to the manufacture of improved cold-work and hot-work tool steels. The basic heat treatments for P/M high-speed tool steels include preheating, austenitizing, quenching, and tempering. This article describes manufacturing properties, cutting tool properties, and applications of P/M high-speed tool steels. It discusses the development of P/M high-speed alloy steels that cannot be made by conventional methods because of their high carbon, nitrogen, or alloy contents. For high-speed tool steels, a number of important end-user properties have been improved by powder processing; machinability, grindability, dimensional control during heat treatment, and cutting performance under difficult conditions where high edge toughness is essential. Several of these advantages also apply to P/M cold- and hot-work tool steels, which, compared to conventional tool steels, offer better toughness and ductility for cold-work tooling, better thermal fatigue life, and greater toughness for hot-work tooling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.