Abstract

Source apportionment may be useful in epidemiological investigation of PM health effects, but variations and options in these methods leave uncertainties. An EPA-sponsored workshop investigated source apportionment and health effects analyses by examining the associations between daily mortality and the investigators' estimated source-apportioned PM(2.5) for Washington, DC for 1988-1997. A Poisson Generalized Linear Model (GLM) was used to estimate source-specific relative risks at lags 0-4 days for total non-accidental, cardiovascular, and cardiorespiratory mortality adjusting for weather, seasonal/temporal trends, and day-of-week. Source-related effect estimates and their lagged association patterns were similar across investigators/methods. The varying lag structure of associations across source types, combined with the Wednesday/Saturday sampling frequency made it difficult to compare the source-specific effect sizes in a simple manner. The largest (and most significant) percent excess deaths per 5-95(th) percentile increment of apportioned PM(2.5) for total mortality was for secondary sulfate (variance-weighted mean percent excess mortality=6.7% (95% CI: 1.7, 11.7)), but with a peculiar lag structure (lag 3 day). Primary coal-related PM(2.5) (only three teams) was similarly significantly associated with total mortality with the same 3-day lag as sulfate. Risk estimates for traffic-related PM(2.5), while significant in some cases, were more variable. Soil-related PM showed smaller effect size estimates, but they were more consistently positive at multiple lags. The cardiovascular and cardiorespiratory mortality associations were generally similar to those for total mortality. Alternative weather models generally gave similar patterns, but sometimes affected the lag structure (e.g., for sulfate). Overall, the variations in relative risks across investigators/methods were found to be much smaller than those across estimated source types or across lag days for these data. This consistency suggests the robustness of the source apportionment in health effects analyses, but remaining issues, including accuracy of source apportionment and source-specific sensitivity to weather models, need to be investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.