Abstract

The human microbiome, found throughout various body parts, plays a crucial role in health dynamics and disease development. Recent research has highlighted microbiome disparities between patients with different diseases and healthy individuals, suggesting the microbiome's potential in recognizing health states. Traditionally, microbiome-based status classification relies on pre-trained machine learning (ML) models. However, most ML methods overlook microbial relationships, limiting model performance. To address this gap, we propose PM-CNN (Phylogenetic Multi-path Convolutional Neural Network), a novel phylogeny-based neural network model for multi-status classification and disease detection using microbiome data. PM-CNN organizes microbes based on their phylogenetic relationships and extracts features using a multi-path convolutional neural network. An ensemble learning method then fuses these features to make accurate classification decisions. We applied PM-CNN to human microbiome data for status and disease detection, demonstrating its significant superiority over existing ML models. These results provide a robust foundation for microbiome-based state recognition and disease prediction in future research and applications. PM-CNN software is available at https://github.com/qdu-bioinfo/PM_CNN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.