Abstract

ABSTRACTThe present study investigates the effect of both ply level material uncertainty and ply angle uncertainty on the failure envelope, strength characteristics and design of laminated composite. Multiple failure envelopes and distributions of the strength parameters are obtained for Tsai-Wu and maximum stress criteria using Monte Carlo simulation. A newly developed directional bat algorithm (dBA) is then used to perform the constrained design optimization of laminated composite for the first time while considering uncertainty effects. The effect of ply level uncertainty on failure envelopes and the corresponding optimal design of laminated composite structures is thus quantified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call