Abstract

This work is concerned with physical testing and numerical simulations of flat and round nose drop-weight impact of carbon fibre-reinforced laminate composite panels to predict ply level failure. Majority of the existing studies on impact of composites by spherical nose impactors are experimental, computational models are simplified, and based on classical laminated plate theories where contributions of through-thickness stresses are neglected. Present work considers flat nose impact and contributions from through-thickness stresses and is mainly simulation based. A computational model was developed in ABAQUS™ software using adaptive meshing techniques. Simulation produced (2D model) stresses were numerically integrated using MATALB™ code to predict through-thickness (3D) stresses. Through-the-thickness stresses were then utilised in advanced failure criteria coded in MATLAB™ software to predict ply level failures. Simulation produced results demonstrate that the computational model can efficiently and effectively predict ply-by-ply failure status of relatively thick laminates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.