Abstract

Colorectal cancer (CRC) is a major cause of cancer-related deaths. Metastasis is enhanced through epithelial-mesenchymal transition (EMT), a process primarily induced by the transforming growth factor beta (TGF-β)-mediated canonical Smad pathway. This study focused on plexin D1 (PLXND1), a chemoreceptor for the ligand SEMA3E to mechanosensory, showing that PLXND1 induces EMT via activation of the PI3K/AKT pathway in CRC cells. The findings showed that PLXND1-knockdown decreases cell migration and invasion significantly, and that the binding of p61-SEMA3E to the PLXND1 enhances the invasiveness and migration through EMT. Furin inhibitor suppresses EMT, decreasing cell migration and invasion. Furin cleaves full-length SEMA3E and converts it to p61-SEMA3E, suggesting that furin inhibitors block PLXND1 and p61-SEMA3E binding. Furin is a potential therapeutic target for the purpose of suppressing EMT by inhibiting the binding of p61-SEMA3E to PLXND1. In vivo experiments have shown that PLXND1-knockdown suppresses EMT. Mesenchymal cells labeled with ZEB1 showed heterogeneity depending on PLXND1 expression status. The high-expression group of PLXND1 in 182 CRC samples was significantly associated with poor overall survival compared with the low-expression group (P = 0.0352, median follow-up period of 60.7 months) using quantitative real-time polymerase chain reaction analysis. Further research is needed to determine whether cell fractions with a different expression of PLXND1 have different functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call