Abstract
Plutonium oxidation state distribution on Yucca Mountain tuff and synthetic pyrolusite (beta-MnO2) suspensions was measured using synchrotron X-ray micro-spectroscopy and microimaging techniques as well as ultrafiltration/solventextraction techniques. Plutonium sorbed to the tuff was preferentially associated with manganese oxides. For both Yucca Mountain tuff and synthetic pyrolusite, Pu(IV) or Pu(V) was initially oxidized to more mobile Pu(V/VI), but over time, the less mobile Pu(IV) became the predominant oxidation state of the sorbed Pu. The observed stability of Pu(IV) on oxidizing surfaces (e.g., pyrolusite), is proposed to be due to the formation of a stable hydrolyzed Pu(IV) surface species. These findings have important implications in estimating the risk associated with the geological burial of radiological waste in areas containing Mn-bearing minerals, such as at the Yucca Mountain or the Hanford Sites, because plutonium will be predominantly in a much less mobile oxidation state (i.e., Pu(IV)) than previously suggested (i.e., Pu(V/VI).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.