Abstract

The Plutonium Conversion Task within the Plutonium Immobilization Program (PIP) transforms incoming plutonium (Pu) feed materials into an oxide acceptable for blending with ceramic precursors. One of the feed materials originally planned for PIP was unirradiated fuel, which consisted mainly of the Zero Power Plutonium Reactor (ZPPR) fuel. Approximately 3.5 metric tons of Pu is in ZPPR fuel. The ZPPR fuel is currently stored at the Argonne National Laboratory-West as stainless steel clad metal plates and oxide pellets, with the vast majority of the Pu in the metal plates. The metal plates consist of a Pu-U-Mo alloy (containing 90% of the ZPPR plutonium metal) and a Pu-Al alloy (containing 10% of the ZPPR plutonium metal). The Department of Energy (DOE) decided that ZPPR fuel is a national asset and, therefore, not subject to disposition. This report documents work done prior to that decision. The Hydnde-Oxidation (HYDOX) Process was selected as the method for Metal Conversion in PIP because it provides a universal means for preparing oxide from all feed materials. HYDOX incorporates both the hydride process, originally developed to separate Pu from other pit materials, as well as the oxide formation step. Plutonium hydride is very reactive and is readilymore » converted to either the nitride or the oxide. A previous feasibility study demonstrated that the Pu-U-Mo alloy could be successfully converted to oxide via the HYDOX Process. Another Metal Conversion milestone was to demonstrate the feasibility of the HYDOX Process for converting plutonium-aluminum (Pu-Al) alloy in ZPPR fuel plates to an acceptable oxide. This report documents the results of the latter feasibility study which was performed before the DOE decision to retain ZPPR fuel rather than immobilize it.« less

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.