Abstract

The Lesser Antilles Volcanic Arc is remarkable for the abundance and variety of erupted plutonic xenoliths. These samples provide a window into the deeper crust and record a more protracted crystallisation history than is observed from lavas alone. We present a detailed petrological and in situ geochemical study of xenoliths from Martinique in order to establish their petrogenesis, pre-eruptive storage conditions and their contribution to construction of the sub-volcanic arc crust. The lavas from Martinique are controlled by crystal–liquid differentiation. Amphibole is rarely present in the erupted lavas, but it is a very common component in plutonic xenoliths, allowing us to directly test the involvement of amphibole in the petrogenesis of arc magmas. The plutonic xenoliths provide both textural and geochemical evidence of open system processes and crystal ‘cargos’. All xenoliths are plagioclase-bearing, with variable proportions of olivine, spinel, clinopyroxene, orthopyroxene and amphibole, commonly with interstitial melt. In Martinique, the sequence of crystallisation varies in sample type and differs from other islands of the Lesser Antilles arc. The compositional offset between plagioclase (~An90) and olivine (~Fo75), suggests crystallisation under high water contents and low pressures from an already fractionated liquid. Texturally, amphibole is either equant (crystallising early in the sequence) or interstitial (crystallising late). Interstitial amphibole is enriched in Ba and LREE compared with early crystallised amphibole and does not follow typical fractionation trends. Modelling of melt compositions indicates that a water-rich, plagioclase-undersaturated reactive melt or fluid percolated through a crystal mush, accompanied by the breakdown of clinopyroxene, and the crystallisation of amphibole. Geothermobarometry estimates and comparisons with experimental studies imply the majority of xenoliths formed in the mid-crust. Martinique cumulate xenoliths are inferred to represent crystal mushes within an open system, through which melt can both percolate and be generated.Electronic supplementary materialThe online version of this article (doi:10.1007/s00410-016-1299-8) contains supplementary material, which is available to authorized users.

Highlights

  • Arc magmas are commonly highly differentiated and rarely represent primary mantle-derived melts

  • The vast majority of studies on arc magmatism are restricted to samples of the extrusive products, which represent the end products of magmatic processes that may occur over considerable time and depth ranges within the arc crust

  • We focus on the in situ trace element concentrations of mineral phases contained within a range of plutonic xenolith types

Read more

Summary

Introduction

Arc magmas are commonly highly differentiated and rarely represent primary mantle-derived melts. The vast majority of studies on arc magmatism are restricted to samples of the extrusive products, which represent the end products of magmatic processes that may occur over considerable time and depth ranges within the arc crust. Plutonic xenoliths, representing erupted plutonic samples, have a greater preservation potential than phenocrysts in lavas and are more likely to provide a window into the true fractionation history of magmas (Arculus and Wills 1980; Macdonald et al 2000). The Lesser Antilles Arc is exceptional globally in respect to the abundance and variety of erupted plutonic xenoliths, which are the focus 87 Page 2 of 21.

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.