Abstract

Small-angle neutron scattering and pulsed-field gradient stimulated-echo nuclear magnetic resonance (NMR) have been used to study the structural characteristics of aqueous Pluronic solutions. In particular, changes in the micellar structure upon addition of ibuprofen to the solutions and altering the temperature have been investigated. Increases in temperature and ibuprofen concentration both appear to favor micellization, with increases observed in the aggregation number, fraction of polymer micellized, and core radius of the micelle, along with a decrease in the volume fraction of the solvent in the core. At high drug concentrations and/or temperatures, micelles of the more hydrophobic Pluronics scatter neutrons strongly at low Q, indicating attractive interactions between micelles or a change in the shape of the aggregates. The addition of ibuprofen to Pluronic P104 has also been found to reduce the critical micellization temperature from approximately 20 degrees C to below 13 degrees C. The hydrophobicity of the Pluronic, quantity of ibuprofen present, and temperature of the solution all seem to have a strong influence on the extent and nature of aggregation observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.