Abstract

It has recently been found that Pluronics (block copolymers of ethylene oxide, EO, and propylene oxide, PO) favor the permeability and accumulation of anthracycline antibiotics, for example doxorubicin (Dox), in tumor cells. In an effort to understand these results, the interaction of EO(2)/PO(32)/EO(2) (Pluronic L61) with unilamellar egg yolk vesicles (80-100 nm in diameter) was examined. A partition coefficient K(p)=[Pl](membrane)/[Pl](water)=45 was determined. This corresponds to adsorption of about 20 polymer molecules to the surface of each vesicle in a 20 microM polymer solution. Despite this rather weak adsorption, Pluronic has a substantial effect upon the transmembrane permeation rate of Dox and upon the phospholipid flip-flop rate within the bilayers. Thus, the Dox permeation rate increases threefold and the flip-flop rate increases sixfold in 20 microM Pluronic. The two rates increase linearly with the amount of adsorbed polymer. The obvious ability of Pluronics to increase the mobility of membrane components may have important biomedical consequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.