Abstract
Metabolism is central to embryonic stem cell (ESC) pluripotency and differentiation, with distinct profiles apparent under different nutrient milieu, and conditions that maintain alternate cell states. The significance of altered nutrient availability, particularly oxygen, and metabolic pathway activity has been highlighted by extensive studies of their impact on preimplantation embryo development, physiology, and viability. ESC similarly modulate their metabolism in response to altered metabolite levels, with changes in nutrient availability shown to have a lasting impact on derived cell identity through the regulation of the epigenetic landscape. Further, the preferential use of glucose and anaplerotic glutamine metabolism serves to not only support cell growth and proliferation but also minimise reactive oxygen species production. However, the perinuclear localisation of spherical, electron-poor mitochondria in ESC is proposed to sustain ESC nuclear-mitochondrial crosstalk and a mitochondrial-H2O2 presence, to facilitate signalling to support self-renewal through the stabilisation of HIFα, a process that may be favoured under physiological oxygen. The environment in which a cell is grown is therefore a critical regulator and determinant of cell fate, with metabolism, and particularly mitochondria, acting as an interface between the environment and the epigenome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.