Abstract

The origin of Earth’s felsic continental crust is still a mystery. The continental crust requires two-steps partial melting of mantle rocks. There are two proposed hypotheses for the continental crust growth in the Early Earth. One is the subduction-related magmatism, e.g. island arc, that produces intermediate to felsic magma which constitutes the early buoyant continental crust. The other is that the magmatism induced by mantle plume creates the thick basaltic crust, and which partially melts into continental crust. However, both two models have their deficiencies. It is still a controversial topic that when plate tectonics begins, which is an obstacle for applying the subduction-induced model in the Early Earth. On the other hand, the plume-induced model seems to be inefficient to support the continental crust growth. The previous numerical studies haves generally focused on the mechanisms of the continental crust formation, while efficiency of the model remains unknown. Thus, we simulated the melt transport process and integrated petrological model in our numerical model to evaluate the efficiency and the plausibility of continental crust production by mantle plume in the Earth’s history. The comparison between our model results and the reconstruction model of continental crust growth provides a new insight for the problem. The results indicates that the mantle plume is an efficient and possible way to support rapid continental crust growth in the Archean. Other mechanisms, e.g. subduction, may take dominant role since the Proterozoic because of low efficiency of plume-induced continental crust production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call