Abstract

The occurrence of a Neogene shallow subduction stage, as well as, a Pliocene slab-tearing, and steepening of the Nazca plate in the southern Central Andes are well established. However, a satisfactory explanation for the origin and connection between these complex processes is still elusive. In this contribution, we revise the late Cenozoic tectonic and magmatic evolution of the southern Central Andes between 35° and 38° S and discuss different proposals for the Miocene slab shallowing and its Pliocene destabilization. Recent plate kinematic reconstructions show that Neogene arc-front expansion linked to slab shallowing, fold belt reactivation in the main cordillera and intraplate contraction in the San Rafael Block correlates with the subduction of the ancient Payenia plume, a deep mantle anomaly potentially rooted in the lower mantle. Also, the Nazca slab tear determined from tomographic analyses and subsequent slab steepening may also be a direct consequence of this plume subduction process. Considering the westward drift of South America and the presence of several neighbor hotspots over the Nazca plate, the Payenia plume overriding could be the first of future episodes of plume–trench interaction in the Andes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.