Abstract
Abstract The stability of a steam plume during direct-contact condensation into a crossflow of subcooled water is investigated for mass fluxes that are higher (>600 kg/m2s) and a nozzle diameter (2.4 mm) that is smaller than typically seen in the literature. The transition from a stable steam plume to an unstable plume associated with the formation and collapse of steam bubbles is characterized by high-speed imaging and high-frequency pressure measurements. Four regimes are observed: stable, condensation oscillation, transition, and unstable. A regime map and spectral signatures of the different flow regimes are provided. Results are compared with correlations from the literature, which are typically derived for lower mass fluxes, larger nozzles, and injection into stagnant pools of water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.