Abstract

AbstractVenus' tectonic evolution is not well understood. Thousands of kilometers of possible subduction sites on Venus have been identified along networks of rift zone trenches called chasmata. Rift zones are strong candidates for tectonic recycling due to pre‐existing weaknesses in the lithosphere. Recently, peel‐back delamination (PBD) was proposed as a mechanism of regional‐scale lithospheric recycling initiated at Venusian rift zones (Adams et al., 2022, https://doi.org/10.1029/2022je007460). PBD occurs when the lithospheric mantle becomes sufficiently thick and negatively buoyant to decouple and peel away from the overlying crust remaining at the surface. Both positively and negatively buoyant lithosphere were shown to undergo buoyancy‐driven PBD, though delamination is inhibited by increasing positive plate buoyancy. In this study, we use 2D numerical models to verify that delamination can be initiated in thinner, more positively buoyant lithosphere than in models with no plume‐rift interactions. Our results show that plume‐induced PBD in positively buoyant plates is facilitated by the excess negative buoyancy in the lithospheric mantle and increasing plume buoyancy force, and it is inhibited by increasing crustal buoyancy and decreasing rift width. We propose an age‐progressive framework for delamination at rift zones, where young, thin plates require a larger plume buoyancy force to be destabilized than thicker, yet still positively buoyant plates. We use lithospheric thickness constraints to predict PBD may be most likely to initiate near the Dali‐Diana Chasmata system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call