Abstract
The classical boundary-layer scaling laws proposed by Howard for Rayleigh–Bénard convection at high Rayleigh number extend to the analogous case of convection in saturated porous media. We computationally study two-dimensional porous-media convection near the onset of this scaling behaviour. The main result of the paper is the observation and study of instabilities that lead to deviations from the scaling relations.At Rayleigh numbers below the scaling regime, boundary-layer fluctuations born at a Hopf bifurcation strengthen and eventually develop into thermal plumes. The appearance of plumes corresponds to the onset of the boundary-layer scaling behaviour of the oscillation frequency and mean Nusselt number, in agreement with the classical theory. As the Rayleigh number increases further, the flow undergoes instabilities that lead to ‘bubbles’ in parameter space of quasi-periodic flow, and eventually to weakly chaotic flow. The instabilities disturb the plume formation process, effectively leading to a phase modulation of the process and to deviations from the scaling laws. We argue that these instabilities correspond to parametric resonances between the timescale for plume formation and the characteristic convection timescale of the flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.