Abstract
Direct numerical simulations (DNS) of turbulent thermal convection in a $\mathit{Pr}=0.7$ fluid up to $\mathit{Ra}=10^{12}$ are used to study the statistics of thermal plumes. At various vertical locations in a cylindrical set-up with aspect ratio ${\it\Gamma}=\text{width}/\text{height}=1/3$, plumes are identified and their properties extracted. It is found that plumes are much less likely to be emitted from plate regions with large wind shear. Close to the plates, the plumes have a unimodal log–normal distribution, whereas at more central locations the distribution becomes weakly bimodal, which can be traced back to clustering of the plumes and influence of the large-scale circulation. The number of hot plumes decreases with height. The width of the plumes scales with $\mathit{Ra}$ approximately as $\mathit{Nu}^{-1}$, indicating that it is determined by the thermal boundary layer thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.