Abstract

Fruit growth depends on highly coordinated hormonal activities. The phytohormone gibberellin (GA) promotes growth by triggering degradation of the growth-repressing DELLA proteins; however, the extent to which such proteins contribute to GA-mediated fruit development remains to be clarified. Three new plum genes encoding DELLA proteins, PslGAI, PslRGL and PslRGA were isolated and functionally characterized. Analysis of expression profile during fruit development suggested that PslDELLA are transcriptionally regulated during flower and fruit ontogeny with potential positive regulation by GA and ethylene, depending on organ and developmental stage. PslGAI and PslRGL deduced proteins contain all domains present in typical DELLA proteins. However, PslRGA exhibited a degenerated DELLA domain and subsequently lacks in GID1–DELLA interaction property. PslDELLA–overexpression in WT Arabidopsis caused dramatic disruption in overall growth including root length, stem elongation, plant architecture, flower structure, fertility, and considerable retardation in development due to dramatic distortion in GA-metabolic pathway. GA treatment enhanced PslGAI/PslRGL interaction with PslGID1 receptors, causing protein destabilization and relief of growth-restraining effect. By contrast, PslRGA protein was not degraded by GA due to its inability to interact with PslGID1. Relative to other PslDELLA–mutants, PslRGA–plants displayed stronger constitutive repressive growth that was irreversible by GA application. The present results describe additional complexities in GA-signalling during plum fruit development, which may be particularly important to optimize successful reproductive growth.

Highlights

  • Fruit development is a multiphase process that requires a tight coordination of molecular, biochemical and structural elements

  • To investigate the molecular basis of GA action in fruit development, three novel sequences closely related to the growth-repressing DELLA proteins, a subset of the plant-specific GRAS (GAI, RGA and SCARECROW) family of transcriptional regulators were isolated from Early

  • PslGAI, PslRGL, and PslRGA predicted to encode proteins of 633, 593, and 537 amino acid residues with calculated molecular weights of 69.9, 64.5, and 59 kDa, respectively

Read more

Summary

Introduction

Fruit development is a multiphase process that requires a tight coordination of molecular, biochemical and structural elements. Phenotypical analysis of transgenic Arabidopsis plants overexpressing each of PslDELLA confirmed the function of the three proteins as growth-repressors. To investigate the molecular basis of GA action in fruit development, three novel sequences closely related to the growth-repressing DELLA proteins, a subset of the plant-specific GRAS (GAI, RGA and SCARECROW) family of transcriptional regulators were isolated from Early

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call