Abstract

Battery chargers are fundamental components for successful deployment of plug-in hybrid electric vehicles (PHEVs) into future smart grid. Recently, an integrated isolated bidirectional battery charger has been proposed for PHEV applications. The proposed charger eliminates the conventional bulky dc-link capacitor by feeding a dual-bridge resonant tank directly from the three-phase grid. The disadvantages associated with the presented charger are the high number of semiconductor switches which contribute to high cost and switching losses of converter as well as complicated control circuitry. In this paper, the previous structure is modified to address the aforementioned drawbacks and is controlled by a modified switching algorithms. The new proposed PHEV battery charger is verified mathematically and by simulation results to provide higher power density with lower switching stress and losses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.