Abstract

In this paper we shortly survey some loop transformation techniques which break anti or output dependences, or artificial cycles involving such ‘false’ dependences. These false dependences are removed through the introduction of temporary buffer arrays. Next we show how to plug these techniques into loop parallelization algorithms (such as Allen and Kennedy's algorithm). The goal is to extract as many parallel loops as the intrinsic degree of parallelism of the nest authorizes, while avoiding a full memory expansion. We try to reduce the number of temporary arrays that we introduce, as well as their dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.